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Background

= NASA Aeronautics Research Mission Directorate (ARMD) vision for aeronautical research that
encompasses a broad range of technologies to meet future needs of the aviation community

= Recent technology advances in sensors, networking, data mining, prognostics, and other
analytic techniques enable proactive risk management for National Airspace System
(NextGen)

= Technology convergence of multidisciplinary research to develop transformative concepts
and to enable a safe and efficient aviation system

= Systematic training of next generation engineers and workforce pipeline for future aerospace
industries and research



i Objectives

= Real-time system-wide information fusion methodology for
prognostics and safety assurance of the NAS

= Self-identified technical challenges (TC) and objectives

O

TC 1: Develop an extensible community-based NAS air traffic simulation system incorporating data-
derived vehicle/subsystem level failure/fault models that can be used for system-wide safety
assessment and integration with training simulations

TC 2: Determine information sources inventory associated with current ATM operations, model
human ATM performance in simulator, and develop real-time sensors of human performance

TC 3: Determine faults and early damage indicators in the subsystems during ground and in-air
fleetwide operations utilizing state of the art multiscale, multimodal sensors, data mining, feature
extraction and classification

TC 4: Uncertainty quantification, verification and validation, and risk assessment tools for 80%
increase in computational speed and 60% increase in confidence in risk assessment compared with
existing approaches

TC 5: Integrated diagnostics, prognostics, probabilistic modeling, and simulation tools for 50%
increase in accuracy compared with existing approaches



Proposed methodology and tasks

= Highly multidisciplinary research themes
Air traffic Big data I are integrated together

system analytics management

model = Seven major tasks:

Task 1. System-wide air traffic modeling and failure simulation

S Information fusion ST LS Task 2. Multi-modality safety monitoring, detection and data

monitoring & prognostics mitigation .
analysis
Task 3. Human system integration
Network Human System wide . Task 4. Uncertainty management and risk assessment
computation system verification , . .
integration validation - Task 5. Information fusion and prognostics
Task 6. Verification, validation, and safety assurance
Schematic illustration of the proposed major . Task 7. Integrated education, research, and demonstration

research themes



Information fusion — Bayesian
TL Entropy Network (BEN) framework

. = Integrate multiple types of information
vopgerere )| (=) among multiple domains within the
: — ‘ airspace system
anmm , : > = Bayesian Entropy Network (BEN) —
‘ based information fusion for Data,

@ Experiences and Knowledge (DEK)
Center systems , -
\‘ p(0)s< 1(8)- u(x'10) e
- . Entropy term for abstracted knowledge, physical
' constraints, and expert opinions

v ower TRACONY . = Hybrid data-based and physics-based
A ' prognostics
@ | s Assist the risk assessment and

decision-making for safety assurance



Information fusion — classification for
runaway incursion

= Adding entropy information:

= Expert linguistic information

representing historical experiences

Runway
1. When the taxi clearance communication error is on the
ATC side, the cause for runway incursion is more likely
to be cross runway without clearance.

2. LUAW communication error can only lead to and is the

Lo Entropy

Communication
Error

/ Entropy

Runway
incursion

only reason for attempt take-off without clearance Accuracy for communication error Accuracy for runway incursion cause
0.8 08
..... o o
= Expressed as constraints on B, e T — ——
expected value of the posterior <o egayesan | o e ayesin
. . . ' BEN n
distribution “w m o w Tw m w s
Training size Training size
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Information fusion — avoid mid-air

collision

= Fuse machine learning models plus expert knowledge (fault trees)

= Convert existing system fault trees to Bayesian networks, instead of building from scratch
= Automate the conversion from fault tree to Bayesian network

......................

conforms to

Bayesian network | conforms to

metamodel

Changes from the expert (addition of nodes)

Observation data, Automated calibration

Fault tree
instance model

Automated
conversion
A 4

BN instance
model

A 4

Updated BN
instance model

A

Posterior
distributions

From expert

Fault tree instance model

FT to JSON plugin
A 4

JSON representation

JSON to BN plugin
A 4

Bayesian network instance model

User changes
\ 4

Updated BN model

BN analysis plugin
A 4

PyMC model in python
Model Calibration
Plotting

Nannapaneni & Mahadevan,
AIAA Aviation 2018

Aircraft self-
separation example

Near MAC

Advanced
Airspace Concept

Tactical
Separation
Assured Flight
Environment

MAC AAC

Traffic Collision
Avoidance
System



Information fusion — prognostics and
safety metrics

Simulating accidents for landing on taxiway Taxtway

— Runway

US|ng NATS \\ :\Iormaltrﬁjectory
) . ] . \Taxiwayc ncorrect line-up
Update the trajectory using ADS-B information _

28R

and BEN o

= Predict the landing point at the airport and confidence level
= Prognostics for potential collision of any pair near terminal region

0.4

Prediction for the distance between two aircrafts Comparison of the updated prediction
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i Air traffic simulation — NATS

= Community-based software for formulating and analyzing NAS safety prognostics problems under
realistic NAS traffic environments.

= National Airspace Traffic Safety-Analysis (MATS) Server-Client Software released (Python,
MATLAB, Java interfaces)

= 55 Airports in the NAS with all the gates, taxiways, runways, approach, go-around, and
departure procedures

= Terrain Profile for the Contiguous United States
= NOAA wind and convective weather bl e

(SOSS, ATG, GoSim)

= Multiple application examples and software demos

= Interface with any user-defined real-time simulation

= Human Pilot/Controller error models )
= 2018 PHM Conference paper summarizing the software status Schemat;mum&; i

fault/Failure Simulation




Air traffic simulation — real-time
icloud -based computlng

emote Server

NATS

{

—

; PiI-in-the-Ioop

NATS Server g "@)) Simulation(s)

Linux OS .
Controller-in-the-loop

FAA, NOAA Simulation(s)

Data Feed
-User Data ULI-User Graphical
User Interface

ULI-User Code: Us-er n ]
1. Python (Linux, Windows, Mac)

2. JAVA
3. MATLAB

NATS Client




Air traffic simulation — information

‘_h flow

NAS,
Airport ,
Terrain

NOAA Weather Data

Controller & Communication Error Models

Database
FAA, USGS

FAA Traffic Data >»| Aircraft Flight Plans

Vol it v P kAot e

Pilot, Communication, Navigation & Automation Error Models

NAS Surveillance

Accident &
Incident
Database

Mode Transition & Rerouting Requests

NOAA

Weather Data Aircraft Dynamic Models
VS

Safety ‘ Aircraft States

Metrics ‘l,




Air traffic simulation — hybrid learning

for aircraft dynamics

Deep Residual
RNN
(DR-RNN)
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Air traffic simulation — automatic
weather avoidance

Network Configuration
Layer number Layer Type
 Objectives: 1 3x3-Conv-32
> Develop an automated trajectory prediction algorithm for arbitrary 4 3x3-Cony-32
weather cell shapes at the pixel level 3 2x2-maxpool
> Include weather dynamics and forecasting uncertainties for planning 4 ST
. . . . 5 3x3-conv-64
» Combine simple geometric models and CNN-based learning to understand = = ;
. . . . T e S X2-Maxpoo
the decision making of pilot and controller .=
®° 7 3x3-conv-128
. .
6 @ R 8 3x3-conv-128
. e 9 2x2-maxpool
L @ 10 512-fc
B Playbook Compliant % 11 6a-fc
BPlaybook Non-compliant,. 1
; o AJ : ; °0 12 2-sigmoid
S Probabilistic decision 1 » Pregict vs. True
1008 : o Shortest path
oy : e
D % .
50 A4 - &
. N
Fast Marching Map =

10 20 30 40 S0 60 70 80 90 100

Probabilistic decision 2




Human system integration— human
factors and operational error

A|r Trafﬁc Controllers The Hational Airspace System (HAS) # Operat|0na| EI‘FOI‘S Safe &
< | = __ e Effective NAS

e R

HETEE OO

Situation Cognitive Density
Weather
[ awareness ] [Workload [ cathe ] = How do human factors (e.g., SA, cognitive load)
! of ATCs interact with factors in the NAS to affect

: . ATC performance (operational errors) and a safe
Fatigue... | Separation... l and effective NAS?
= Need access to real-time data that provides

Real Time Communication Data as a Surrogate information on problematic human states that
(voice and data communications) may lead to operational error-> Communication

data




Human system integration —
‘.h hypotheses for testing

n  Communications data can serve as a | | | |
sensor for the human part of the NAS = | . R

n Changes in the ATC-pilot state may

correspond to changes in = AN

communication patterns which can B e
signal potential operational errors/risk X S
We are address| ng th|s hypothe5|s th roug h: . Notionzs;lo diagram éoéopictfﬁg patterns of communication

changing over time with other parts of the system

 Literature Review
« Existing ATC voice comms
« SWIM data

« Simulation (in which we can push the boundaries of ATC performance)



Human system integration — design of
i ATC experiment

12 Experienced (retired) and inexperienced (students) ATCs
= Up to 4 pseudo pilots (students) each controlling 4-8 planes
= Simulated approach scenarios
= Baseline normal conditions and increasing traffic density

= Traffic density — 4-32 planes per sector

= Complicating events
= Separation issues
= Loss of engine
= Pilot miscommunication

= Measures
= ATC Operational Error — breach of separation limits
= Measures

= Voice Communication (patterns over time — detect change)
= Volume — how much communication over time
»« Flow — who talks to whom patterns
= Voice — pitch, volume changes over time

= Facial Expression — cameras and affective software labeling
= Eye blink rate (Pingbo Tang)
= Keystrokes/Data comm




Human system integration — VORATS

= Voice Recognition for Air Traffic £ snmsum: /
Simulators (VORATS) & ] ks Q : /
| $10

$4

Simulator independent $25
Automatic recording and translating, self-triggering
IoT with distributed computation Q Total
Easily expandable ( N x Pi)

Automatic recognize the people (with Pi ID)

Data with time stamp for integration

= Fulton Undergraduate Research Initiative
(FURI) project (pending)

= Integrated research and student

education



Data analytics — text mining for safety
reports

Task 1: Classify the states in which the accident happened Task 2: Classify the actual causes which led to the accident
ﬁ’roblem Definition: Using 2246“
accldent Re pol’ts from NTSB (Pal’t Table 1. Classification accuracy using finear VM in Task 1 Table 5. Classification accuracy using linear SVM in Task 2
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. Linear SVM 0.632 Efficient Easy 0.8 0.6070.62 0.659
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a Non-li SVM 0.623 Efficient Hard
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S MNB 0.515 Efficient H; -
tradeoff among accuracy, efficiency, icien ar :

. opeps GBDT 0.659 Time-consumin Eas Training Accuracy Validation Accuracy Testing Accuracy
and explanation capabilities. g V

® Linear SVM Non-linear SVM MNB mGBDT




Data analytics — automatic safety
indicator extraction

O Task 1: The indicators whose bars are

marked red are taxi taxiway, pushback Accident state indicators Aircraft issue indicators
gate, ramp and /and, which are intuitively Top 20 Key Indicators Top 20 Key Indicators
relevant to our classification task. ] : = : |
pushbacﬁ ] T ol

O Task 2 (aircraft issue as an = — e g
example): Similarly, the keywords with ramp | A b ——
red bars are relevant words to this issue. mi] T ] —
Examples include gear, nut, trunnion, bf:g ] [ :
land, tire, march, carcass, touchdownand ™ St —
overhaui, which are intuitively relevant o o | —
key indicators to identify Aircraft issues "] = | | . |
for accident reports. L = & 0 L 2

Importance Score Importance Score

Conclusion: Our machine learning models match our intuition by using highly relevant features
instead of using the metadata from the reports in the database.



Data analytics — imbalanced data of

NAS safety reports

A Novel Model for Learning Representations from Imbalanced Data
= A novel random walk model nhamed Vertex-Diminished Random Walk

= It encourages the random particle to walk within the same class, leading to more accurate node-context

pairs
=  Semi-supervised method for learning representations from both label

information and graph structure

Existing method: = oot
Poor separability *| .
between classes  "|s ¢

~ ImVerde:
/L_ Good separability
«Ebetween classes

I..'.
LMY
3, . .

.l..\" B i
N .{"
RIE I o.éo.'-

I'.. -

Imbalanced Network

Preliminary Results on NTSB Data Set

Methods Recall@k
DEEPWALK 0.500
Node2vec 0.467
GraRep 0.516
Planetoid 0.472
ImVerde-r 0.522
ImVerde-e 0.500
ImVerde-a 0.538

(b) ImVerde

Furthermore, we compared the
new embedding features with the
original TF-IDF features. As
shown below, the concatenation
of embedding and TF-IDF
features improves the
classification performance with
linear SVM. And a smaller
parameter C is preferred for the
embedding features compared to
TF-IDF features alone.

—— TFIDF
—a— Embedding feature
—a— Both

045 —m

0.40

Accuracy

0.35

ool 01 10 i 100 1000

€ value




Data analytics — hybrid model
assembling .- I —

Text Data Word
(Event synopsis) " vectorization
| N S R P SO D,
______________________ SvM: *
|' Maximize the margin

Structural data

Data Sou rces Contextual features

1. Aviation Safety Reporting System
(ASRS) ASRS

Ensemble of Deep Neural Networks

: : i T
2. System-wide Information Management 64573 reports | | Categoricalor | :
SWIM) dat numerical data \Facgh:hphas'e'b'l't
(SWIM) data . Fien condons’
3. National Transportation Safety Board Light Primary problem & = £

Location of event
Persons involved
Contributing factors

Aircraft information (model,
crew size, flight plan)

(NTSB) accident analysis reports

|

|

|

|

|

| :
Anomaly of aircraft II:>: N = &
equipment — .
Airspaceviolation | e % v 21 = % i
Malfunction type | | ~ . “ = = - -

| | = = )

| |

! |

______________________ |
Four-step Framework I
1. Risk-based event outcome categorization T T T T smemowE

) . . T e |
%. Hybrid model construction | @ @
4 :

Probabilistic fusion rule development

Map the risk-level prediction to event-level outcomes

Hybrid Model
; ° AT _ N\ (T ~ . p() Probabiisic e 0USe | s Moderately |2 it crew anaedtas
p(Ya = l) = . 1p(Y = lly = ])P(Ya = ]) * the prediction results high Risk i precaution -+
]=

equipment problem -*

1. General maintenance

|

-- medium Risk Bl g?goe?\emlrelease
Prediction Accuracy refused--
ow Risk HEl 1. Air traffic control

. Zhang & Mahadevan,
Precision: 81% Recall: 81% F1 Score: 81% AIAA Aviation 2018

provided assistance
2. Flight Crew Returned To
Gate -~

|

; |

| |

| |

I |

I |

I |

-— | il
~ - i il
14 (]) from the two models | |:> 1. Flight crew diverted 0
| Medium Risk |l ; S 2. Flight crew overcame |

: |

| |

I |

| |

I |

I |

I |
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Monitoring and sensing — big picture
of airside monitoring

= Dimensional reduction — Autoencoder
= Feature extraction for handling critical system parameters
= Anomaly detection in real airline dataset & simulated flight dataset

I Uncertaintiesdueto | 1 Uncertainties due to | I Uncertainties dueto | I Uncertainties due to |
| Environmental 1| Airside Systems I | pilot action and I 1 Groundside Systems |
| conditions 1 1 Information | | operation 11 Information I

Task Contribution
- Probability characteristics & uncertainty quantification for
aircrafts with subsystem faults
Changes to aircraft dynamics due to existence of faults
Air traffic system response to aircraft faults

v

Information Fusion and Prognostics <

A 4




Monitoring and sensing
- anomaly detection

= Current model tested with a reduced dataset in cruise
phase for online monitoring using simulated fault cases

Linearly independent Status of system
features health

Flight information Sensing information
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= 458 flight data investigated
Distribution of global safety

Monitoring and sensing — indication

of pilot behavior

probability constructed in

logscale (threshold set to be - :
Core speed

2000 I A N

Anomalies in aircraft detected | EGT

in 3/458 flights

4
thl

[ Anomaly in sensing signal ]
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Monitoring and sensing — human
i behavior monitoring

Learn knowledge from the accident report
— | ATC anomalous
behaviors
HMM-based Human Behavior Monitoring ASRS |
- Accident Reports B ATC errors
Facial EAR HMM
Landmark > . >
. Extraction Model -
Detection L | ATC-related accidents
T Bayesian Network
Detected Anomalies Input _ Y Output
v Fat 1. Risk Knowledge Risk Prediction
gtlgue ' » * Anomalous behaviors » 1. Probabilities of human errors
* Distr ac?tlon.  Human errors 2. Probabilities of accidents
* Poor Situation Awareness * Accident types
2. Correlation between elements

*EAR - Eye Aspect Ratio



ATC/HUMAN SENSORS

Monitoring and sensing — computer
vision technique

B 7 model Person level analys_ls
initialization EAR - Eye Aspect Ratio
< \
: Feature ¥
. R extraction Model HMM model
Training Data - facial > > Sope r»
P (Calculate Reestimation parameters :
EAR) == .
v NO YES SO - I AN R =

Team level analysis
Model ) . =
onvergenc - Indoor trajectories of
groups of people

Outdoor Site level analysis
Groups of people across job
site for collaboration analysis




Uncertainty management — uncertainty
in diaghostics and prognostics

Modeling flight trajectory
Bayesian network > state-space model

» .
gysEem _state;: a_irc(;raftI po_sition, velocity, heading f/lr;ahr;%,;g:lg,r) at;/lbrzaonigman,
Data ystem input: wind velocity
Simulated data: NATS
Field data: SWIM (FAA) Anomaly detection
Track multiple flights using state estimation
Near-terminal Measured data: position, velocity, heading
Anomaly:
Safet t safety assessment (1) discrepancy between measured and predicted
a_e y assessmen ) examp|es aircraft position
Determine safety metric and risk (2) separation distance below threshold
using probabilistic fault prognosis l
Probabilistic prognosis Fault diagnosis
» Update state-space model using « Identify cause of anomalous behavior
identified faults - (e.g., wind gust, engine malfunction, pilot
* Quantify uncertainty in prognosis error)
«  Quantify uncertainty in diagnosis




Uncertainty management — an

ATL Air Trafficin BIueSky

In-conflict aircraft
(orange) undergo
conflict detection and
resolution (CD&R)
based their state-
space diagrams to
avoid LoS.

illustration example

SWIM Flight Plans to BlueSky Scenarlo

:02:05.04>CRE
t02:09.04>DALZ39G
:02:059.04>DATL23596
:02:095.03>CRE
t02:09.03>DAL3ES
:02:059.03>-DAL3ES
:02:16.14>ENY3T5E
t02:16.14>ENY3758
:02:16.14>ENY3T5E

ODC\ODC\ODC\

DALZ3I96
CRIG
DEST
DAL3IES
CRIG
DEST
HDG
ALT
SFED

n'15_£
ERSW
FATL
R3Z20
FATL
MMNMGE
177.965
32000.0
385.0

33.018
EWZTL

33.207
EWZTR

\ S

Create aircraft by ID,

type, position, and speed
Assign origin, destination

and runway (for ATL)

Per SWIM modify HDG,

ALT, SPD

State-Space Diagrams (SSDs)

The is the
intersection of forbidden and reachable
velocities and defines the set of
Forbidden and Allowable Reachable
Velocities (FRVs and ARVs) [1]

Flight Plan Flexibility (FPF)
FPF =1— Area(FRV)
Area(FRV )+ Area(ARV)

« An FPF close to 0 indicates that most velocities among the
aircraft’s reachable velocities that will result in a LoS.

« An FPF of 1 means that the aircraft may assume any reachable
velocity and not incur any LoS.

« An FPF of 0 means that a LoS is inevitable if no CD&R action is
taken by any other aircraft in the system.

(1]

S. Balasooriyan, “Multi-aircraft Conflict Resolution using Velocity Obstacles,”
Delft University of Technology, 2017.




Uncertainty management — uncertainty
quantification of single ADS-B

= Reasons for positional uncertainty = Two levels of positional uncertainty
= Navigation satellite and onboard receiver broadcasted in ADS-B data
derive the aircraft’s position

= Normal and abnormal (fault) error induce the . o fid level onl
positional uncertainty O Position error at 95% confidence level only

considering normal error

Level 1: Accuracy

Reasons for uncertainty | S S - S Q In ADS-B data, this term is represented by
= Satellite fault |’ o o - - NACp (Navigation Accuracy Category for
R T———— TR position) from 0 to 11.
= 0 The EPU (Estimated Position Uncertainty) is
= lonospheric delay | frazzazazzessmmm position error range denoted by NACp

= Tropospheric delay
= Multi-path error
= Receiver noise

Level 2: Integrity

O Position error at 99.99999% confidence level
considering navigation service failure cases

O In ADS-B, this term is represented by NIC
(Navigation Integrity Category) from 0 to 11

_____________________________

Position estimation:

X=H'H)'HTz=x+ (H'"H)"'H™v

h . R .
h; 99.99999% confidence level 0 The Re. (containment radius) is position

where H={ " |~ N(0.9) error range denoted by NIC. 30
hy,



Uncertainty management — uncertainty

= The two aircrafts may view different
satellite-set at a specific time

Sky-plots of the
aircraft pair

quantification of a pair of aircraft

Position error correlation

= The aircraft pair position error correlation is
sharply reduced at real separation of 4nm

when the sky-plots become different
(time:03:33:00) “f ~ = - :

\
i ‘ Satellite #11 emerged | |

\

\

: ,
\/
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

5
55555555555
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Uncertainty management — uncertainty
propagation with simulation

AALL1GBIT AALAZE DAL1ATS DALZ2Z229 DALZ396

1.0 1
Propagating ADS-B Uncertainty 0] " | o
through BlueSky Simulations: : " . ﬂ"l | & f“'
= BlueSky was connected with NESSUS® to 24 W , ;
propagate uncertainty with FPF as Qol T T . it
= 1000-point LHS was based on probability BAL2BYS P

ENY3758 FFT1615

-
=]

distributions of ADS-B signals for three
Navigational Accuracy Categories for position
(NACp) [2]

Flexibility

2 2 2
B @ @
§

NACp Values and Corresponding
Position Standard Deviation

(=T -1
[~ X
e |
——
"

b=

Standard SIEVRETC FFTE07 ROU1658 RPA4653
NACp Value L Deviation 1.0 i i
Deviation (NM) .
(degrees) aw

4 1.0 0.0016 B r |: o= 1.0MNM
g | o=05NM
5 0.5 0.008 Toa{ie h o= 0.1 NM

7 0.1 0.016 D2 ‘h o ¥ \f 4 !

0.0 i 1

[2] Federal Aviation Administration (FAA) (2010) Airworthiness Approval of Automatic Dependent 0 200 400 600 O 200 400 GO0 O 200 400 GO0 O 200 400 GO0
Surveiflance - Broadcast (ADS-B) Out Systems. AC 20-165. Tirne (5] Tirne {5) Time {s) Time ()



Uncertainty management —

uncertainty from communications

:r:- Terrain info

Delay Profile
(K factor)

BER

Multipath

Modulation
and Coding

Figure 5: ber

in a fading-er

[e——

Runway Scenario

Terrestrial objects such as mountains and buildings can

require different channel models.

ltioath interf different . The reIationshiSﬂwBE‘EWeen SNR and
cause multipath interference, different scenarios BER under different K factor




Uncertainty management — uncertainty
reduction via channel optimization

« Optimal scheduling of data transmissions to minimize the overall tracking
error

« Significant reduction of uncertainty in the round-robin communication pattern

« Large impact of communication with terrain information for safety evaluation
on the ground and near the airport

Weighted Sum of Error

18000 __ Trajectory of Aircraft in the Air - Trajectory of Aircraft on the Ground
16000 / — al Trajectory
450 Y — Our Algorithm
w0l L [ RoundRon
| 400 |
] 7 7
12000 \ 1 1114 ’ 121
o
o
10000 | ‘ Il | 8 §
(T |‘ ‘ ‘.lw 35 =
8000 | .l i ) &
|| |ﬁw Hl‘ ! f 5. 3
6000 | 0 ol o l‘” ‘ \ |- £
i | L Wl g
4000 N o T 1 O A Rl =
I A | L | f b
TR LY \‘ VM L
2000 - b MU TR [ s VY W N Y YA
Ftetidon o A L nr s s MM s ool -
/ T [=———Round Robin
0 \ \ . \ \ . .
0 50 100 150 200 250 300 350 400 y 6 337 338 339 ;
time/secon d Latitude/rad & 7 6 ° - 3 2 ! 0 !




Educational activities and
achievements

SAMSUNG

Fulton Undergraduate Research Initiative Air Traffic Management Program

30+ students (PhD + MS + undergraduate students) from 7 majors (air traffic management, aerospace engineering,
psychology, mechanical engineering, computer science, electrical engineering, and civil engineering)

First MS graduate hired in ATM field

First undergraduate design competition submitted for Airport Cooperative Research Program - SMART LINE UP AND
WAIT SYSTEM FOR AIRPORT

Fulton Undergraduate Research Initiative proposal — A $99 VORATS system (VOice Recognition for Air Traffic
Simulators)

Intergradation with ASU ATM program and PHX controller training program



Pro

ect management - team

Task 6. Verification

Task 1. NAS modeling and\alidation
Expertise: Liu- Yongming Liu Expertise:
= Domain knowledge PM —PK Menon + Bayesian methods
* Dataanalytics andlearning  JH - Jingrui He = Dynamic network
= Network com putation LY - Lei Ying simulation
* Softwaredevelopmentand  ac _ aditi Ch dh ¢ icati
integration > o, networks
1 rOprimization algorithms
Tﬂshi}'?tz:iﬂ"g & Task 7. Integrated Task 5. Information
g education and e
[rermrm research T
: Isr::s::g ;‘:I‘"sl?:e Expertise: = Bayesian methods
ging y = Educational experiences = Dynamic network
' i’:;‘:ﬂii“élzzl: andteanie = Aviation training simulation
+ Forwardand inverse * Simulator 7 + Communication
methods = Software integration networks
< = Management L = Optimization algorithms
Task 3. Human System PT- Pingbo Tang Task 4. UQ and Risk
\ Integration NC - Nancy Cooke assessment
88 Barron Bichon I

'7 E e Expartise; ) MN — Mary Niemczyk Expertise:
i "*ﬁ\ © 7 = i Huma",hﬂor Teseanitien = Uncertainty quantification
| = N 7 * E""'“‘f°r‘ methods Red Font ——lead co-PI = Reduced order modeling
VHN“ERHILT N ‘_-/"/ E 'Ir:;’r'n'i"r“;""“ and pacems + Probabilistic methods
< ‘ = >’m“ . b = Human subject experiments ) :Ia;;fi:?mﬂ:“d nummerical

Team integration flow chart

= Diverse, multidisciplinary team that includes faculty in ASU’s Ira A. Fulton Schools of Engineering
and collaborators from Vanderbilt University, Southwest Research Institute and Optimal Synthesis
Inc.

= Big data analysts, applied statisticians, image processors, psychologists, computer scientists, and
aerospace engineers

= Expertise from information theory, applied statistics, data mining and analytics, risk management,
airspace software systems, monitoring and imaging, and network science

= Smooth transition from academia basic research to applications of aerospace industry



Research dissemination and

community impact

= Development of simulation tools
(NATS) to be used for future
NextGen research

= Wide dissemination of research

outcomes to aviation community

= Prognostics Analysis and Reliability
Assessment (PARA) - ATM

= Organize special sessions in

Air Traffic Simulation
{FACET/ACES/CARPAT)
(S0SS, ATG, GoSim)

FEEIEECLTEEE

Inputs

NATS PARA - ATM

»““:"“- = conference to enhance the

| B program impact

il = External Advisory Board (EAB)

= that consists of various experts
_— from industry, government

agencies, and academia

Open source github sharing



‘-h External Advisory Board

Lou Gullo ,
Raytheon

Stephanie Cope,

Chid Apte, Eric Haugse,
IBM

Jeffrey Panhans,
Allegiant Air

Chuck Farrar,
Boeing LANL Intel Intel

) B
] Qi SN
Habib Fathi, Lyle Hogeg: Roger Mandeville , Banavar Sridhar, Xinzhou Wu, Verne Latham Rob Hunt,
Pointivo Piedmont Airlines  ATAC USRA Qualcomm FAA

« External Advisory Board (EAB) — members from various different disciplines and

industries
EAB roles: 1) provide feedback and comments on the proposed research and research progress; 2) participate (in
person or via telecom) in annual project meeting; 3) participate in regular progress teleconferences; 4) provide
feedback and suggestions on future research directions to address important gaps in the community.

Heinz Erzberger,
UC Santa Cruz
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Conclusions and future work

Fusing knowledge among multiple domains within the airspace system.

Creating a multidisciplinary team of big data analysts, applied statistician, image
processors, psychologists, computer scientists, and engineers.

Improving air travel safety through complex human-cyber-physical system simulations
using ultra-fast algorithms for real-time analysis.

Developing extreme-scale, in-air and on-ground data sources to increase system
reliability and risk management.

Integrating multi-level education with K12 Education Outreach Program, Fulton
Undergraduate Research Initiative, graduate student advising, and pilot training.

Close collaboration with aviation industry enables future technology transfer.
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Thanks!
Questions?
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